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Abstract

A numerical simulation of wavy core flow was carried out previously. They calculated the interfacial
wave shape for laminar flow. In our present simulation, the shear stress transport turbulence model is used
to solve the turbulent kinetic energy and dissipation rate equations and a splitting method is used to solve
Navier–Stokes equations for the wave shape, pressure gradient and the profiles of velocity and pressure in
turbulent wavy core flows. The wavelength decreases with Reynolds numberR and with the volume ratio g.
The pressure gradient increases with Reynolds number R and with the volume ratio g. High pressures are
generated at a stagnation point leading to wave steepening, while low pressures are generated at a re-
attachment point. The computed wave shapes and frictional losses are in satisfactory agreement with ex-
periments and greatly improve on previous results. � 2002 Published by Elsevier Science Ltd.
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1. Introduction

Water lubricated pipelining is a method of transporting highly viscous fluids at low cost. A
viscous fluid forms a core surrounded and lubricated by a water annulus. The water reduces the
shear stress on the wall of the pipe. An important series of experiments on the water lubricated
pipelining was carried out by Russell and Charles (1959); Russell et al. (1959), Charles (1963) and
particularly by Charles et al. (1961). Glass (1961) and others found that the lowest pressure
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gradient was achieved when the input ratio of water to oil was between 30% and 40%. Other
experiments on water lubricated transportation in horizontal pipes were reported by Stein (1978)
and Oliemans et al. (1985).
Ooms et al. (1984) and Oliemans and Ooms (1986) tried to use lubrication theory to analyze the

case of a very viscous, wavy eccentric core–annular flow for laminar case. They showed that it
generated a buoyant force proportional to the first power of the velocity to balance the gravity. In
their study, the shape and amplitude of the wave must be given as empirical inputs. Oliemans et al.
(1987) also tried to extend their results to the turbulent case but again the theory requires the
inputs of waveforms and wavelengths, which are harder to identify in the turbulent flows. Their
turbulence model underpredicts the variation of the pressure gradient with the velocity of core,
even though wave amplitudes and wavelengths observed through their experiment are used as
input data.
Bentwich (1964) studied for the laminar case with the basic core–annular model which the

generators of the core and annulus are rigorously parallel and the cross-sections of the pipe and
core are circular shaped, but the centers of them do not coincide. He solved the Poisson equation
that governs in the eccentric core flow model with a Fourier series in bipolar coordinates.
However, he did not use his solution to evaluate the friction factor or hold-up ratio. Huang et al.
(1994) studied laminar and turbulent core–annular flow to assess the effects of eccentricity and the
volume ratio on the friction factor and holdup ratio. They used a model of core–annular flow in
which the oil core is a perfect cylinder with generators parallel to the pipe wall, but off-center and
adopted a standard k–emodel with a low Reynolds number capability for turbulent case. Bai et al.
(1996) achieved the important numerical calculation of the interfacial wave shape for laminar
flow. The wavelength and amplitude were calculated by solving the normal stress balance on the
interface of the wave. The developed waves are asymmetric with steep slopes near the high-
pressure region at the front face of the wave crest and shallower slopes near the low-pressure
region at the lee side of the crest.
In this paper, we extend the numerical simulation of axisymmetric laminar core–annular flow to

turbulent case by adopting the shear stress transport (SST) k–x model proposed by Menter
(1994). The wavelength and amplitude are obtained by using the normal stress balance following
Bai et al. (1996). A splitting method with linear equal-order finite element method proposed by
Choi et al. (1997) is used as a solution algorithm and a consistent streamline upwind Petrov–
Galerkin (SUPG) developed by Brooks and Hughes (1982) is adopted as a stabilizing technique
for convection dominated flows. Using this code, the shape of interface, pressure distribution and
secondary flow motions are analyzed for turbulent core–annular flow.

2. Governing equation

Consider two concentric immiscible fluids flowing down an infinite horizontal pipeline. We
assume that the core is axisymmetric with interfacial waves that are periodic along the flow di-
rection.
Patankar et al. (1977) decomposed the pressure in periodic fully developed flows as

P ðx; rÞ ¼ �bxþ pðx; rÞ; ð2:1Þ
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where b is a mean pressure gradient and p(x; r) represents the periodic part of the whole pressure P
and behaves in periodic fashion from module to module. The term bx accommodates the general
pressure drop along the flow direction.
The continuity equation and Navier–Stoke equation for the unsteady incompressible flow in

cylindrical coordinates can be written as follows:

continuity equation
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The turbulent kinetic energy equation and the dissipation rate equation are obtained from
Menter’s shear stress transport model (Menter, 1994). The SST model utilizes the original k–x
model of Wilcox in the inner region of the boundary layer and switches to the standard k–e model
in the outer region of the boundary layer and in free shear flows. In the dissipation rate equation,
the function F1 is designed to be one in the near wall region (activating the original model) and
zero away from the surface (activating the transformed model). Then the turbulent kinetic energy
and the dissipation rate equation modified by SST model are written as

turbulent kinetic energy
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dissipation rate equation
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Let /1 represent a constant in the original k–x model (rk1; . . .), /2 a constant in the transformed
k–e model (rk2; . . .). The corresponding constant / of the new model (rk; . . .) is given as follows:

U ¼ F1U1 þ ð1� F1ÞU2: ð2:7Þ

All constants, as well as the function F1, are given in Appendix A.

3. Numerical method

3.1. Four-step fractional method

The fully implicit four-step fractional finite element method (Choi et al., 1997) is used to in-
tegrate in time the continuity equation (2.2) and the momentum equations (2.3) and (2.4). In this
approach, pressure is decoupled from those of convection, diffusion and other external forces. The
fully implicit four-step fractional method is written as follows:
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where Dt is the time increment, bUUi and U �
i are intermediate velocities, and superscript n denotes

the time level. In the procedure, the intermediate velocity does not necessarily satisfy the conti-
nuity equation. At the first step, the intermediate bUUi is obtained by using velocities, pressure and
external forces calculated on the previous time step. Hence, at the next step, the intermediate
velocity is corrected by the pressure and the pressure is obtained from the continuity constraint.
The fact that the pressure is decoupled from the velocity in the fractional step method was

utilized in the finite element analysis of the incompressible Navier–Stokes equations by several
researchers, who proved that the fractional step method can be successfully applied to the finite
element analysis. This approach is more accurate than the SIMPLE algorithm based finite element
method for the same grid, because the fractional step method does not include any approximation
procedure. This comparison is found in Choi et al. (1997).

3.2. Galerkin finite element discretization

The transport equations of momentum, turbulent kinetic energy and dissipation are discretized
using a consistent streamline upwind Petrov–Galerkin method and the pressure equation using a
Galerkin method. The weak formulations of the governing equation are derived by multiply them
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by a corresponding weighting function and integrating over the spatial domain of a problem. The
weak formulations of governing equation can be written as follows:
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Considering that Galerkin method corresponds to a central finite difference formulation, a con-
vection-dominated problem cannot be solved effectively without using a very dense grid. One of
the methods to overcome this problem is the SUPG scheme in which the weighting function is
different from the trial function. The SUPG formulation for momentum equation is stated as
follows:
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where ~pphi ¼ cjwh
i;j is a perturbation weighting function. This is derived from a tensorial artificial

diffusion in a multidimensional space which acts along the flow direction. In the present study, the
pertubation weighting function is applied to all terms in the momentum equation by the consistent
SUPG method. The coefficients of the pertubation weighting function are given in Appendix B.
The Poisson type pressure equation is obtained from the continuity constraint. Using the di-

vergence theorem, the weak formulation of continuity equation can be expressed as follows:Z
X
w;iUnþ1

i dX ¼
Z

C
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Then, inserting Eq. (3.4) into the left-hand side of Eq. (3.9), the following Poisson type pressure
equation is obtained as follows:
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When used with a fractional four-step method, the pressure equation (3.10) has an advantage in
treating the outflow boundary condition, because the unknown Unþ1

i is well approximated by the
known bUUi through Eqs. (3.2) and (3.4).
The solution at steady state is sought through time marching of the corresponding unsteady

governing equation. Therefore, the value of 1/Dt can be considered as an inertial relaxation factor
of steady SIMPLE algorithm (Patankar, 1980).

3.3. Calculation of the interfacial wave shape

For wavy core–annular flow simulations with highly viscous fluids, the viscosity of the core
liquid is much greater than that of annular liquid. The flow of oil can be regarded as a creeping
motion on the forward motion of a rigid core. The slow secondary motion should not have a great
effect on the overall dynamics. Therefore, the core flow is assumed to be solid with standing waves
on the interface.
The normal stress equilibrium condition on the interface is written as follows:

ð�kPk þ 2HrÞ þ n � k2lDk � n ¼ 0; ð3:11Þ
and the shear stress equilibrium condition is written as follows:

t � k2lDk � n ¼ 0; ð3:12Þ
where D ¼ ð1=2Þ rU þrUTð Þ, k � k ¼ �ð Þ1 � �ð Þ2, the subscript 1 and 2 indicate the core and an-
nulus respectively, 2H is the sum of the principal curvature, r is the coefficient of interfacial
tension, n ¼ n12 is the unit normal vector from liquid 1 to 2 and t is the unit tangent vector.
The viscous part of the normal stress condition Eq. (3.11) on the interface vanishes

n � k2lDk � n ¼ 2l1
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¼ 0; ð3:13Þ

since
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þ oUn
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¼ 0; ð3:14Þ

and on the interface

oUs

os
¼ 0: ð3:15Þ

Therefore, the normal stress condition on the interface can be rewritten as follows:

kPk ¼ 2Hr: ð3:16Þ
The periodic pressure equation (2.1) is rewritten for each core and annulus as follows:

P1 ¼ �bxþ Cp1; ð3:17Þ
P2 ¼ �bxþ pðx; yÞ þ Cp2; ð3:18Þ

where Cpi is constant. Hence, the normal stress balance at the interface Eq. (3.16) is expressed in
Bai et al. (1996) as follows:
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r

f 1þ df
dx

 �2� �1=2 � r d2f
dx2

1þ df
dx

 �2� �3=2 ¼ kPk ¼ P1 � P2; ð3:19Þ

where f ¼ f(x) is the height of interface from center line.
In order to solve our wavy core–annular problem for a given wave speed, we must compute b.

the pressure drop in one wave is define as bL, where L is length of one wave. The bL may be
expressed by the shear stress acting on the wall as follows:

bLA ¼ Fx ¼ 2pR
Z L

0

sw dx; ð3:20Þ

where A is the area of the cross-section of pipe.

4. Numerical results

4.1. Validation of turbulent code

4.1.1. The fully developed pipe flow
To verify the present turbulent code, fully developed Poiseuille flow in pipe is calculated at

various Reynolds numbers 200–40,000. The Reynolds number is defined as Re ¼ qUD=l, where U
is the mean velocity and D is the diameter of the pipe. The length of calculation domain is long
enough to get the fully developed profile for the velocity, pressure and kinetic energy. The
boundary conditions at solid surfaces are given as follows:

u ¼ t ¼ k ¼ 0; x ¼ 6v

b1ðDy1Þ
2
; ð4:1Þ

where Dy1 is the distance to the next grid point away from the wall. The Neumann boundary
condition ou=ox ¼ ok=ox ¼ ox=ox ¼ 0 is applied for u, k and x and the Dirichlet boundary
condition v ¼ 0 is applied at exit. The boundary conditions at inlet are given as follows:

u ¼ Uin; t ¼ 0; x ¼ Uin

L
; vt ¼ 10�2v; k ¼ vtx: ð4:2Þ

The friction factor is computed for various Reynolds numbers from 200–40,000 in the fully de-
veloped pipe flow and shown on Fig. 1. Note that the present numerical method gives accurate
results for the turbulent flow as well as for the laminar flow. For laminar flow, the computed
results of friction factor satisfy the Hagen–Poiseuille equation k ¼ 64=Re. The results of turbulent
friction factor are represented by Blasius’ correlation k ¼ 0:316=Re0:25.
Fig. 2(a) and (b) shows the velocity profile and the profile of turbulent kinetic energy of a fully

developed pipe flow for Re ¼ 40,000. The results obtained from the present turbulent code are
compared with the results of Wilcox’s original k–x model and the experimental data of Laufer
(1952) for Reynolds number based on pipe diameter and average velocity of 40,000.
From the comparison with the result of Wilcox’s k–x model and experimental data for the

velocity profile and the turbulent kinetic energy profile, we can see that that the present code using
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the Menter’s SST model and the SUPG method gives more accurate result than the original k–x
model in fully developed pipe flow. The profiles obtained from our simulation at region away
from the wall have more accurate values than near the wall.

4.1.2. The wavy core–annular flow
With the assumptions and equations described in Section 3.3, the wave shape of core flow and

the profile of annular flow are computed for given wave speed c, water flow rate Qw and average
oil radius R1. In our present simulation, the wall moves with core velocity c opposite the core; in
this frame the core is standing. Then, we calculate the flow profiles in the annular region. The
boundary conditions at wall are given as follows:

u ¼ c; t ¼ k ¼ 0; x ¼ 6v

b1ðDy1Þ
2

ð4:3Þ

and the ones at the interface are given as a stationary solid boundary condition Eq. (4.1).
Before the flow field in the annulus is calculated, we assume a free surface shape around a given

average core radius R1. During each iteration of the flow field, the pressure gradient b is adjusted
to satisfy the force balance in one wavelength. Using the pressure on the surface obtained at the
previous step, the shape of surface is calculated by solving the normal stress condition Eq. (3.19).
The wavelength is adjusted in every iteration in order to get a converging surface shape for the
given average core radius R1 and water flow rate Qw. The new interface determined at the previous
step is used in computing the flow field again. Then, these steps are repeated until the solutions are
converged.
The mesh and boundary conditions for the velocity are shown in Fig. 3. We define the Reynolds

number as (see Arney et al. (1993) for a discussion of R)

R ¼ qVD
l

1
�

þ g4ðm� 1Þ
�
¼ Re 1

�
þ g4ðm� 1Þ

�
; ð4:4Þ

Fig. 1. The friction factor vs. Reynolds number in the fully developed pipe flow. (� � �) Hagen–Poiseuille equation
for laminar flow; (––) Blasius’ correlation for turbulent flow.
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Fig. 2. (a). The comparison of computed and measured velocity profile in the turbulent pipe flow at Re ¼ 40,000. Our

result is closer to the experimental data than Wilcox’s k–x model, particularly in the region away from the wall. (b)

Comparison of computed and measured profile of turbulent kinetic energy in the turbulent pipe flow at Re ¼ 40,000. R

is a radius of pipe and us ¼
ffiffiffiffiffiffiffiffiffiffi
sw=q

p
.
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where V ¼ ðQ1 þ Q2Þ=pR22 is the mean velocity, g2 ¼ R21=R
2
2 is the core fraction and m ¼ l2=l1 is

the viscosity ratio.
Fig. 4 shows the velocity profile in the annulus for laminar flow and turbulent flow. When the

wall moves and the flow is driven by pressure, the velocity profile on the crest of wave for
R ¼ 6700 (Fig. 4 (b)) has the typical S-shape expected for turbulent Couette flow. For R ¼ 1000
(Fig. 4(a)), the profile has the full shape expected for laminar Couette flow with a positive pressure
gradient.
Here, we introduce the hold-up ratio as a dimensionless parameter for core–annular flow. The

hold-up ratio h is defined as the ratio Q1=Q2 of volume flow rate to the ratio V1=V2 of volume in the
pipe

h ¼ Q1=Q2

V1=V2
¼ Q1=Q2

R21= R22 � R21ð Þ ¼
c
c2
; ð4:5Þ

where c ¼ Q1=pR21 is the wave speed for rigid core flow and c2 ¼ Q2=pðR22 � R21Þ is the average
velocity of annular flow. The dimensionless input parameters R, h and g replace the dimensional
input parameters Qw, c and R1 in the present simulation. The definition of the dimensionless
parameters L�, p� and b� are defined as follows:

Fig. 3. The mesh of calculation domain has the body fitted and structured mesh and the boundary conditions at the

wall and interface are given as the solid boundary condition. The wall moves with corevelocity c and the core is

standing.

Fig. 4. The comparison of the velocity profile of annular flow for laminar flow (R ¼ 1000) and turbulent flow

(R ¼ 6700).
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L� is dimensionless wavelength ¼ L=R; ð4:6Þ

b� is dimensionless pressure gradient ¼ bqR22
l2

; ð4:7Þ

p� ¼ fpðf ðxÞ; xÞ � P2ðf ðLÞ;LÞg
qR2p
l2

: ð4:8Þ

To validate the present code for core–annular flow, our result for laminar code using the finite
element method is compared with the result from Bai et al. (1996) based on the finite difference
method. The wavelength and pressure gradient is calculated for the case with h ¼ 1:4 and g ¼ 0:8.
To compare the wavelength and pressure gradient obtained by solving the turbulent equations for
high Reynolds number with results obtained from the typical direct numerical simulation without
using any turbulent model, the simulations are done by two approaches with same grid points.
Figs. 5 and 6 show how the wavelength and the pressure gradient vary with R for fixed h ¼ 1:4

and g ¼ 0:8. The wavelength decreases withR and the pressure gradient increases withR for fixed
h and g. From these figures, we can note that, for high Reynolds numbers, the results obtained
from the turbulent two-equation model (dotted line) differ greatly from a direct numerical sim-
ulation of laminar flow using same grid points. For higher Reynolds numbers, the wavelength is
shorter and the pressure gradient is larger for the turbulent code than for the laminar code. The
present laminar code gives results close to the data from Bai et al. (1996).
Table 1 compares the computed value of the wavelength with measured data from experiments

for various R and a fixed h ¼ 1:4 and g ¼ 0:826. It is apparent that the turbulent code gives more
accurate results at high Reynolds numbers. In the experiment for horizontal wavy core flow, the
input is Q1 and Q2 and the values of R, h and g for various Q1 and Q2 are obtained from image

Fig. 5. The dimensionless wavelength L� vs. Reynolds number R at h ¼ 1:4 and g ¼ 0:8.
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processing and Eq. (4.5). The movies of core–annular flow are recorded by using a Kodak Ekta-
Pro EM high-speed video camera that takes at rate up 1000 frames per second. The movies are
played and analyzed frame by frame with a computer.
Even though the computed values from turbulent code and measured values of the wavelength

are not the same, we can see the same trend in both; the wavelength is a decreasing function of R.
The values obtained from the computation using the turbulent model are closer to the values of
experiment than the values from the laminar models. While the error for laminar code increases to
around 50% for higher Reynolds number, the error for the turbulent code decreases to less than
8%. We can infer that the error comes from the assumptions as rigid core and axi-symmetric core
flow with zero density difference between core and annulus. In the experimental measurement, the
core is slightly lighter than the annulus and has a limited viscosity even if it is so larger than one of
water. Therefore, the core flow is off-center and deformable.

Table 1

Comparison of the measured values of the wavelength with measured at h ¼ 1:4 and g ¼ 0:826

Reynolds number

4000.2 4684.6 5333.6 5811.5 8000.4

Dimensionless wavelength (L�)

Experiments 1.35786 1.23102 1.07574 1.02346 0.82907

Laminar code 1.91 1.83 1.76 1.72 1.6

Turbulent code 1.55 1.34 1.2 1.11 0.9

Error (%)

Laminar code 28.9078 32.7311 38.8784 40.4963 48.1828

Turbulent code 12.3961 8.13281 10.355 7.79613 7.88061

Fig. 6. The dimensionless pressure gradient b� vs. Reynoldsnumber R at h ¼ 1:4 and g ¼ 0:8.
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4.2. Numerical results

We study how the wavelength, pressure gradient, pressure distribution on the interface and
wave shape vary with R and g. In the vertical pipeline studied in the experiment of Bai et al.
(1992), the hold-up ratio is about 1.39 independent of the input flow rate Q1 and Q2. In the
numerical simulation of the wavy core flow for laminar flow by Bai et al. (1996), they computed
many results for h ¼ 1:4. We also compute for fixed h ¼ 1:4 to compare our results with theirs. In
our computation, we choose the actual physical parameter in wavy core flow of water in a one
inch diameter pipe, l2 ¼ 0:01 poise, q ¼ 1 g/cm3 and r ¼ 26 dyne/cm.
Fig. 7 shows the secondary motions and pressure distribution for R ¼ 1000 and 5000. The flow

in the annulus is composed of a straight flow and an eddy. The low pressure at the back of the
crest of wave is associated with the reattachment point, the high pressure at the front of the crest
of wave is related to a stagnation point. We note that the area of the eddy for turbulent flow is
smaller than for laminar flow due to increasing of the momentum transfer from main flow in
turbulent flow.
Fig. 8 shows the wavelength and the wave shape for various values of R at h ¼ 1:4 and g ¼ 0:8.

When the Reynolds number increases, the wave steepens at the front of the crest and the wave-
length is decreased.

Fig. 7. The comparison of the pressure profile and streamline ofannular flow for laminar flow (R ¼ 1000) and turbulent

flow (R ¼ 5000). The dark color indicates a low pressure and the light one indicates a high pressure.
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Figs. 5 and 6 show how the wavelength and the pressure gradient vary with R for any fixed
hold-up ratio and volume ratio. Fig. 9 shows the pressure distribution on the oil–water interface.
The positive pressure peak appears at the stagnation point and the negative pressure peak at the
reattachment point. For 0:3 < x�=L� < 0:7, the pressure on the interface increases with R for high
R while for low R the pressure does not change.
Fig. 10 shows how the wavelength and pressure gradient vary with g for fixed h ¼ 1:49 and

c ¼ 25 cm/s. Note that the wavelength decreases with g and the pressure gradient increases with g.
To validate the turbulent code for core–annular turbulent pipe flow, the pressure gradient b for

various diameters of pipe was computed and compared with the Blasius’ formula for turbulent
pipe flow. From the relationship between the pressure gradient b and the shear stress sw on the
pipe walls, Joseph et al. (1998) obtained an expression for the pressure gradient b (kPam�1), in
terms of the 7=4th power of the velocity U (m s�1) to the 5=4th power of the pipe radius R0 (m),
namely

Fig. 9. The dimensionless pressure on the interface at R ¼ 1300, 3300 and 5400. The holdup ratio h is fixed at 1.4 and

the volume ratio g is fixed at 0.8.

Fig. 8. The wave shape for different Reynolds numbers at h ¼ 1:4 and g ¼ 0:8.
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b ¼ K
U 7=4

R5=40

¼ k
q3l
29

� �1=4U 7=4

R5=40
: ð4:9Þ

where k is an unknown constant (k ¼ 0:316 for water alone).
In our simulation, pipe radius R0 is replaced by R2 and velocity U by the mean velocity V. These

curves for various pipe radius (0.250, 0.50 and 10) are shown in Fig. 11. These curves collapse to a
single curve with the value k ¼ 0:317 which is almost same with the Blasius value for water alone
ðk ¼ 0:316Þ. From this result, we can write the relation of the pressure gradient for core–annular
flow with an infinitely viscous core and for water alone flow as follows:

Fig. 10. The dimensionless wavelength L� and pressure gradient b vs. g at h ¼ 1:49 and the wave speed c ¼ 25 cm/s.

Fig. 11. The pressure gradient b vs. V 1:75=R1:252 for various pipe radius at the core–annular turbulent pipe flow.
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bCAF with rigid core ¼ 1:01bwater alone ð4:10Þ

The pressure gradients for experimental core–annular flow with deformable core is bigger than
calculated pressure gradient with rigid core. It can be said that wavy core flow of an infinitely
viscous core in turbulent water can be transported as cheaply as water alone. Increased costs
due to secondary motions in the viscous core and to fouling of the pipe wall are presently under
study.

5. Conclusion

• The present code using the shear stress transport model and the streamline upwind Petrov–
Galerkin method gives more accurate results than the original k–x model in fully developed
turbulent pipe flow.

• For the turbulent wavy core–annular flow with fixed hold-up ratio and volume ratio, the wave-
length obtained from the turbulent code is closer than the laminar code to the values of exper-
iment. The pressure gradient in turbulent flow increases more sharply with Reynolds number
than the pressure gradient computed with the laminar code.

• For the turbulent core–annular flow, the area of the eddy in the annulus is smaller than for the
laminar flow due to increasing of the momentum transfer from main flow. The wave steepens
more at the front of the crest and the wavelength decreases more than in laminar flow.

• While the wavelength decreases with Reynolds number at fixed hold-up ratio and volume ratio,
and the wavelength decreases with volume ratio at fixed hold-up ratio and the wave speed, the
pressure gradient has an opposite trend for the same cases.

• The pressure gradient calculated from turbulent code satisfies with Blasius’ formula in the tur-
bulent core–annular flow with a rigid core; the pressure gradient is a linear function of the
7=4th power of the mean velocity to the 5=4th power of the pipe radius and the constant k
is close to the value for water alone turbulent pipe flow.
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Appendix A. The coefficients of shear-stress transport model

The constants of set 1 (/1) are

rk1 ¼ 0:85; rw1 ¼ 0:5; b1 ¼ 0:075; a1 ¼ 0:31; j ¼ 0:41;
c1 ¼ b1=b

� � rx1j2=
ffiffiffiffiffi
b�p
:

ðA:1Þ

The constants of set 2 (/2) are
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rk2 ¼ 1:0; rw2 ¼ 1:856; b2 ¼ 0:0828; b� ¼ 0:09;
c1 ¼ b2=b

� � rx2j2=
ffiffiffiffiffi
b�p
:

ðA:2Þ

F1 is given by

F1 ¼ tanhðarg41Þ; ðA:3Þ

arg1 ¼ min max

ffiffiffi
k

p

0:09xy
;
500v
y2x

 !
;
4qrx2k
CDkxy2

" #
; ðA:4Þ

where y is the distance to the next surface and CDkw is the positive portion of the cross-diffusion
term of Eq. (2.6)

CDkx ¼ max 2qrx2
1

x
ok
oxj

ox
oxj

; 10�20
� �

: ðA:5Þ

And the eddy viscosity is defined as

vt ¼
a1k

maxða1x;XF2Þ
; ðA:6Þ

where X is the absolute value of the vorticity. F2 is given by

F2 ¼ tanhðarg22Þ; ðA:7Þ

arg2 ¼ max

ffiffiffi
k

p

0:09xy
;
500v
y2x

 !
: ðA:8Þ

Appendix B. The coefficients of the perturbation weighting function

ci ¼
zheui
2 uej j ; ðB:1Þ

where z ¼ cothðPeÞ � 1=Pe � min½1; Pe=3�; Pe is element Peclet number ¼ uej jheð Þ=2m; ue is velo-
city at an element center; ui is ith component velocity at an element center; he is element char-
acteristic length.
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